Lecture 1 : Data Compression and Entropy

نویسنده

  • Kamesh Munagala
چکیده

In this lecture, we will study a simple model for data compression. The compression algorithms will be constrained to be “lossless” meaning that there should be a corresponding decoding algorithm that recovers the original data exactly. We will study the limits of such compression, which ties to the notion of entropy. We will also study a simple algorithm for compression when the input text arrives one symbol at a time.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Mathematical Theory of Information , and Applications ( Version 2 . 0 )

These lecture notes introduce some basic concepts from Shannon’s information theory, such as (conditional) Shannon entropy, mutual information, and Rényi entropy, as well as a number of basic results involving these notions. Subsequently, well-known bounds on perfectly secure encryption, source coding (i.e. data compression), and reliable communication over unreliable channels are discussed. We...

متن کامل

Quantum source coding and data compression

This lecture is intended to be an easily accessible first introduction to quantum information theory. The field is large and it is not completely covered even by the recent monograph [15]. Therefore the simple topic of data compression is selected to present some ideas of the theory. Classical information theory is not a prerequisite, we start with the basics of Shannon theory to give a feeling...

متن کامل

Compsci 650 Applied Information Theory Lecture 4

Since the appearing probability of each English symbol P (a), ...P (b), ...P (” ”), ..., P (; ) is not uniform, we should be able to reduce the number of required bits. Based on the probability of each English symbol, we can compute the entropy H(E) ∼= 4.5 bits / char. If we use Huffman coding taught in this lecture to encode English keyboard, then we only need around 4.7 bits / char. Furthermo...

متن کامل

Lossless Source Coding Lecture Notes & Examples

variously referred to as source coding, lossless coding, noiseless coding or entropy coding exactly and without error, the original message. Lossless coding implies that the message may be decoded back to the original sequence of symbols. The converse of lossless coding (“lossy” coding) implies some degree of approximation of the original message. lossless coding may augment lossy coding, eg VQ...

متن کامل

Exergy and Energy Analysis of Diesel Engine using Karanja Methyl Ester under Varying Compression Ratio

The necessity for decrease in consumption of conventional fuel, related energy and to promote the use of renewable sources such as biofuels, demands for the effective evaluation of the performance of engines based on laws of thermodynamics. Energy, exergy, entropy generation, mean gas temperature and exhaust gas temperature analysis of CI engine using diesel and karanja methyl ester blends at d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017